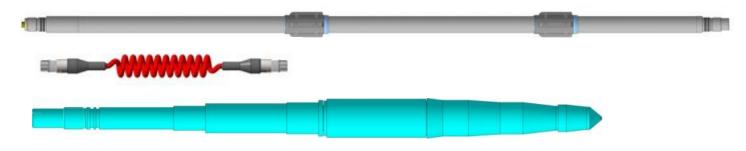
Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес для всех регионов: pmn@nt-rt.ru || www.permneft.nt-rt.ru

Телеметрический комплекс Геопласт-35.4

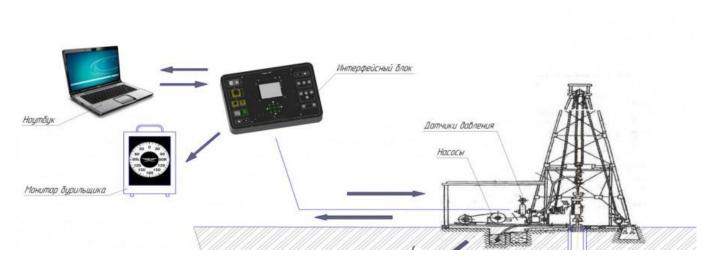
Геопласт-35.4 - высокоточный L/MWD комплекс с гидравлическим каналом связи


Назначение

- телеметрическое сопровождение процесса направленного и горизонтального бурения в MWD/ LWD системах с гидравлическим каналом связи
- Инклинометрия
- Гамма-каротаж
- Резистивиметрия
- Отображение данных в удобной графической и табличной форме
- Интеграция с роторной управляемой системой бурения

Геопласт-35.4 Измеряемые параметры при бурении

- зенитный угол
- азимутальный угол
- отклонитель
- уровень фонового гамма-излучения околотрубной породы
- «кажущееся электросопротивление» околотрубной породы
- значения гравитационных и магнитных датчиков
- значения критериев Gt и Bt
- крутильные колебания буровой колонны
- температура
- уровень вибраций и ударов
- частота вращения ротора пульсатора
- выходное напряжение электрогенератора


Геопласт-35.4 Скважинный прибор Зонд-инклинометр

Обеспечиваемая точность замеров

Nº	Наименование параметра	Диапазон измерений	Погрешность
1	Зенитный угол	0180°	±0,1°
2	Азимутальный угол	0360°	±0,5°
3	Положение отклонителя	0360°	±2,0°
4	Интенсивность гамма импульсов, cps/мин	0256°	±5 cps

Геопласт-35.4 Наземное оборудование

Назначение:

- прием сигналов из скважинного прибора
- декодирование принятых данных и отображение в удобной форме
- отображение данных целеуказания на мониторе бурильщика
- управление бурением в компоновках с РУС

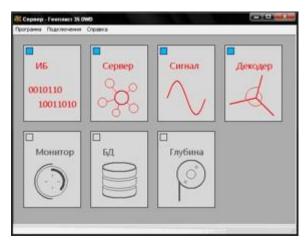
Геопласт-35.4 Наземное оборудование

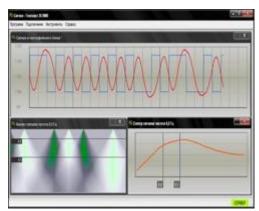
Состав:

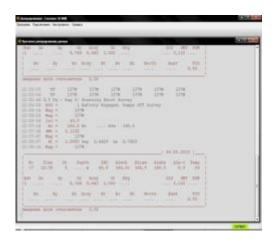
- Интерфейсный блок
- Барьерный блок
- Монитор бурильщика
- Тестер пульсатора
- Программное обеспечение инженера
- Комплект соединительных кабелей

Общие сведения:

- Интеграция с компьютерами телесистемы по USB
- Работа ПО в ОС Windows
- Высокая надежность
- Компактное исполнение:
- ь малый вес и габариты
- удобство транспортировки
- о быстрое развертывание на месте




Геопласт-35.4 Программное обеспечение


- архитектура «клиент-сервер»
- обеспечение наблюдения и управления процессом бурения удаленными пользователями через
- локальную сеть или Интернет
- работа в среде Windows 7/8/10

Главные функции:

- прием сигналов скважинного прибора из интерфейсного блока
- фильтрация и восстановление целостности сигналов
- формирование и декодирование пакетов принимаемых данных
- отображение данных процесса бурения в реальном времени на компьютере и мониторе бурильщика
- пересчет инклинометрических углов
- коррекция азимутального угла методом НУБТ
- ведение баз данных
- обеспечение доступа к процессам и базам данных по архитектуре «клиент-сервер»
- ведение журнала сессий бурения
- формирование и печать отчетов

Геопласт-35.4 Программное обеспечение, Сервисные функции

- чтение архивов данных из скважинного прибора после бурения
- создание и сохранение отчетов по архивам в табличной форме
- формирование и отображение архивных данных скважинного прибора в графической форме Roll Test, KUTh Test, QA Test
- получение таблицы характеристик гамма модуля
- калибровка и термокалибровка прибора
- проверка стабильности показаний датчиков прибора
- настройка параметров работы прибора перед спуском
- обработка данных датчика глубины и нагрузки на крюк

Геопласт-35.4 Спецификация технических параметров

Основные функции комплекса:

- произвольное программирование режимов замеров
- выполнение типовых тестовых процедур в полевых условиях для проверки работоспособности зонда
- перед спуском в скважину по допускам точности
- работа в компоновках с резистивиметром
- автоматическое отключение пульсаций на роторных режимах бурения
- ведение электронного архива телеметрических параметров и состояния прибора
- программная установка порога переключения отклонителя с магнитного на гравитационный
- программная установка длительности паузы до начала пульсаций
- привязка архивных замеров к реальному времени
- управление работой скважинного прибора по командам с поверхности
- установка режимов замера и частоты передачи зонда
- включение/отключение модуля гамма каротажа командой с поверхности
- измерение азимутального угла по методу «коротких НУБТ»
- программная установка диапазона измерения уровня фонового гамма-излучения
- фиксация ударных нагрузок на прибор при выключенном питании зонда
- наблюдение за процессом бурения на компьютере в реальном времени в виде таблиц и графической информации
- ведение архивов, формирование отчетов в удобной форме, возможность оперативной передачи отчетов и сессий на удаленные серверы пользователя

Геопласт-35.4 Точность замеров

Nº	Наименование параметра	Диапазон измерений	Погрешность
1	Зенитный угол	0180°	±0,1°
2	Азимутальный угол	0360°	±0,5°
3	Положение отклонителя	0360°	±2,0°
4	Интенсивность гамма импульсов, cps/сек	0256	±5cps
5	Разрешение гамма каротажа по вертикали, мм	<16	±1%
6	Удельное сопротивление пластов, Ом•м	0,005-2000	±1%
7	Разрешение удельного сопротивления по вертикали, см	<15	±1%
8	Температура корпуса зонда-инклинометра, °С	10125	±2°C
9	Параметр достоверности измерения зенитного угла Gt	1±0.127	±0.0001
10	Параметр достоверности измерения азимута dMT	±5	±0,1
11	Частота вращения генератора пульсатора, об/мин	5005000	±1%

Геопласт-35.4 Эксплуатационные параметры скважинного прибора

Nº	Наименование параметра	Значение
1	Тип пульсатора (штоковый)	MK4/6/8/9
2	Скорость передачи данных на поверхность	0,13Гц
3	Рабочий диапазон напряжения питания от электрогенератора	18100B
4	Потребляемая инклинометром мощность	<3Вт
5	Температура эксплуатации	0125°C
6	Давление бурового раствора	650Атм
7	Диапазон расходов бурового раствора, л/мин	550-1350

8	Выдерживаемые вибрации (рандомизированные, RMS, 15500Гц)	30G
9	Выдерживаемые одиночные удары (0,5 мсек, полусинус)	1000G
10	Интерфейс для связи с ПК	RS232/MIL1553
11	Интерфейс для связи с резистивиметром	MIL1553

Технические преимущества

- высокая точность и стабильность замеров
- высокая надежность
- малые габариты и энергопотребление
- стойкость скважинного прибора к вибрационным и ударным нагрузкам
- интеграция комплекса с Роторной Управляющей Системой бурения
- наблюдение за процессом бурения на скважине из удаленного офиса сервисной компании в реальном времени
- разработка и изготовление в России компаниями, имеющими 20 летний опыт производства бурового
- оборудования и забойных телесистем
- гарантийное и послегарантийное сопровождение
- модернизация с учетом пожеланий Заказчика
- части комплекса защищены патентами
- телесистема имеет разрешение на применение в России и СНГ

По вопросам продажи и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48

Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81

Калининград (4012)72-03-81

Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес для всех регионов: pmn@nt-rt.ru || www.permneft.nt-rt.ru